CORRELATION OF THE RATES OF SOLVOLYSIS OF THE 2-(2-ADAMANTOXYSULFONYL)-N. N. N-TRIMETHYLETHAMANINIUM (2-ADAMANTYL [2]BETYLATE) ION

DENNIS N. KEVILL AND RICHARD W. BAHNKE

Department of Chemistry, Northern Illinois University

DeKalb, Illinois, 60115 USA

(Received in USA 5 April 1988)

Abstract - Despite the remote positive charge within the leaving group, the specific rates of solvolysis at 25.0°C of the 2-(2-adamantoxysulfonyl)-N, N, N-trimethylethanaminium ion (2AdOSO₂CH₂CH₂NMe⁴/₃,1) in 28 pure and mixed hydroxylic solvents have been found to correlate, in a linear free energy relationship plot, very well with Y_{OTs} values (slope of 1.032, correlation coefficient of 0.991). In 50% ethanol, the specific rates of solvolysis are virtually identical for 1 and 2-adamantyl 2,2,2-trifluoroethanesulfonate; for substitution in the methyl of the enthanesulfonate leaving group, one NMe⁴/₃ group has the same influence as three fluorine atoms.

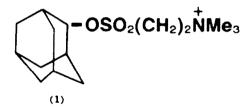
Since its introduction in 1948, the Grunwald-Winstein equation (1) has been

$$\log (k/k_0) - n Y$$
 (1)

widely used for the correlation of the specific rates of solvolysis of S_N1 reactions and, also, the magnitude of m has been used as a mechanistic criterion for unimolecular (m < 1) or bimolecular (m < 1) reaction. For systems, such as simple secondary alkyl derivatives, considered borderline on the basis of other criteria, intermediate values for m are usually observed. In equation 1, k represents the specific rate of solvolysis of a substrate in the solvent under consideration, k_0 represents the specific rate of solvolysis of that substrate in 80% ethanol, and m represents the sensitivity of the specific rate of solvolysis to changes in solvent ionizing power Y.

To correlate the specific rates of $S_{\rm N}2$ solvolyses, Grunwald, Winstein, and Jones³ proposed a two-term linear free energy relationship (eqn. 2), where the

$$\log(k/k_0) - 1 + n$$
 (2)


additional term represents the sensitivity 1 of the specific rate of solvolysis to changes in solvent nucleophilicity N. Scales of solvent nucleophilicity based upon the solvolysis of methyl p-toluenesulfonate4 or the triethyloxonium ion5,6 are available.

The original Y scale was based upon the solvolysis of tert-butyl chloride. While this scale has given excellent service over the last forty years, there are strong indications that a nucleophilic component (1 value of about 0.3) is involved.6-11 It has been suggested that 1-adamenty112 or 2-adamenty113,14 derivatives, where backside attack is blocked or severely hindered, constitute excellent substrates for the development of Y scales. It has been proposed $^{4,8,15-21}$ that different anionic leaving groups (X) each require an individual Y_X scale, for use in the correlation of the specific rates of solvolysis of a RX substrate. For relatively poor leaving groups, χ_{χ} values are more conveniently obtained using the 1-adamentyl derivatives (X = $C1^8$, Br^8 , I^{18} , $OC_6H_2(NO_2)_3^{20}$, $CO_2CF_3^{21}$, and $CO_2C_3F_7^{21}$) and, for better leaving groups, Y_x values are conveniently obtained using the about 105 times slower reacting 22.23 2-adamantyl deviations do indeed exist (for example, for solvolyses in 95% acetone, 17 the \underline{Y}_{OTs} value is -2.95 and the $\chi_{\rm OC10_2}$ value is -0.23), there are several leaving groups for which, for most mixed-solvent systems, the $\chi_{\mathbf{x}}$ values correlate quite well with the original adamantyl-based scale (\underline{Y}_{OTs}) with a slope not far removed from unity. Among the causes of the deviations are differences in electrostatic and/or electrophilic solvation, in lipophilic effects, and in the solvation of aryl and alkyl groups. 20

In contrast to scales based upon 1- and/or 2-adamentyl derivatives with initially neutral leaving groups (leaving as an anion), studies of the 1-adamentyldimethylsulfonium ion^6 and the 1-adamentylpyridinium ion^{25} (in which an initially positively charged leaving group leaves as a neutral molecule) show extremely modest rate variations with change in solvent composition. For the 1-adamentyldimethylsulfonium ion, a rate variation of less than seven was observed across a range of solvents for which a rate variation of about 10^6 was observed for adamentyl derivatives with initially neutral leaving groups. These findings are consistent with the qualitative theory of solvent effects, put forward by Hughes and Ingold, 2^6 for reactions

producing charges (large effects) and dispersing charges (small effects) in going from the ground state to the transition state.

In the present study we have considered a salt, 2-(2-adamantoxysulfonyl)-N.N.N-trimethylethanaminium trifluoromethanesulfonate (2-adamantyl [2]betylate triflate). Although this salt contains a cation (1) of the R-X+ type, during solvolysis charge is developed in the same manner as for the adamantyl derivatives containing initially neutral leaving groups; the leaving group is the zwitterion (+Ne3NCH2-CH2SO3, 2). One would predict, on the basis of the qualitative Hughes-Ingold theory of solvent effects, 26 large variations in the specific rates of solvolysis upon varying the solvent composition. It will be of interest to see to what extent a "remote" positive charge influences the logarithmic correlation of the specific rates of solvolysis against the YOTs scale, a scale based upon an initially neutral sulfonate leaving group.

A series of [2]betylates, with simple alkyl groups have been prepared in the presence of non- or weakly-nucleophilic counterions and they have been found to be good water-soluble alkylating agents.^{27,28} The more recent synthetic procedure²⁸ can be utilized for the preparation of 1 as its trifluoromethanesulfonate salt. Several related amsylates [alkyl p-(trimethylammonio)benzenesulfonate ions] have also been prepared²⁹ and their hydrolyses briefly studied.³⁰

RESULTS

The specific rates of solvolysis of the cation 1, to produce the zwitterion 2, protonated solvent, and ether or alcohol (or a mixture of the two), have been determined at 25.0°C in the following aqueous-organic mixtures: 90-40% ethanol (six compositions), 100-90% methanol (two compositions), 90-40% acetone (six compositions), 100-70% 2,2,2-trifluoroethanol (TFE) (five compositions), 90-70% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) (three compositions). The average values, using all of the integrated first-order rate coefficients from duplicate runs, are reported within Table 1, together with %2Ad(2)B values (calculated according to equation 3) and YOTS values. 4,15,16,17,31

TABLE 1. First-order rate coefficients for the solvolysis of the 2-(2-adamantoxysulfonyl)-N, N. N-trimethylethanaminium ion^{a,b} in pure and aqueous organic solvents at 25.0°C and Y_{2Ad[2]B}^c and Y_{OTs}^d values.

Solvent ^e		10 ⁶ k.s ⁻¹			¥2Ad[2]B	Yots
90 x	EtOH	0.631	±	0.008	-0.763	-0.58
80%	EtOH	3.66	±	0.03	0.000	0.00
70 %	EtOH	13.1	±	0.1	+0.554	+0.47
60 x	EtOH	35.9	±	0.5	+0.992	+0.92
50 x	BtOH	95.3	±	2.9	+1.416	+1.29
401	EtOH	262	±		+1.855	+2.08 [£]
100%	MeOH	0.136	±	0.005	-1.430	-0.92
90%	HeOH	1.01	±	0.02	-0.559	-0.17 [£]
90%	Acetone	0.0687	±	0.0015	-1.730	-1.708 (-1.99) ^h
80%	Acetone	0.728	±	0.004	-0.701	-0.798 (-0.94) ^h
70 %	Acetone	3.19	±	0.04	-0.060	$-0.01^{1} (-0.33)^{1}$
60 x	Acetone	11.8	±	0.2	+0.508	+0.66
50%	Acetone	38.9	±	1.4	+1.026	+1.26 [£]
40%	Acetone	120	±	4	+1.516	+1.85 [£]
100%	TFE	196	±	3	+1.729	+1.80
97 x	TFE	197	±	4	+1.731	+1.83
90%	TFE	198	±	4	+1.733	+1.87 ¹
80X	TFE	207	±	6	+1.752	+1.95 [±]
70%	TFE	227	±	5	+1.793	+2.00
90%	HFIP	4557	±	3	+3.095	+2.90
80X	HFIP	1746	±	3	+2.679	+2.57 ¹ ,j
70%	HFIP	1103	±		+2.479	+2.411.J

aConcentration of ca. 0.004 M. bWith associated standard deviations. $^{\text{CLog}(\underline{k}/\underline{k_0})} \text{ at } 25.0^{\circ}\text{C}, \text{ where } \underline{k_0} \text{ refers to the first-order rate coefficient in 80X ethanol.}$ $^{\text{O}}\text{Values from reference 4, unless otherwise indicated.}$ $^{\text{O}}\text{Percentage of organic solvent by volume for aqueous-ethanol, -methanol, and-acetone and percentage of organic solvent by weight for aqueous-2,2,2-trifluoroethanol (TFE) and aqueous-1,1,1,3,3,3-hexafluoro-2-propanol (HFIP).
<math display="block">^{\text{E}}\text{Values from reference 15b.}$ $^{\text{E}}\text{Calculated from }\underline{\text{YOTS}} = 0.868 \ \log(\underline{k}/\underline{k_0})_{1-\text{AdOTS}} + 0.027 \ (\text{equation from reference 32}).$ $^{\text{I}}\text{Interpolated value.}$ $^{\text{I}}\text{Values from reference 16}.$

The specific rates of solvolysis have also been determined for four TFE-ethanol compositions, and the average values are reported (together with Y2Ad[2]B values) in Table 2; YOTs values are not available for this mixed solvent system.

DISCUSSION

It can readily be seen, from the data of Table 1, that the first-order rate coefficients vary enormously with the solvent composition. This behavior is in marked contrast to the very small rate variations observed for the 1-adamantyldimethylsulfonium and 1-adamantylpyridinium²⁵ ions. A large variation is to be

-0.700

-1.433

trifluoroethanol	mixtures at 25.0°C and Y2Ad[2]B° values.			
Solventd	106k.s-1	¥2Ad[2]B		
80% TFE - 20% EtOH	28.8 ± 0.2	+0.896		
60% TER - 40% REOH	4.65 + 0.03	+0.104		

 0.731 ± 0.021

 0.135 ± 0.002

TABLE 2. First-order rate coefficients for the solvolysis of the 2-(2-ademantoxysulfonyl)-N,N,N-trimethylethanaminium ion^{a,b} in ethanol-2,2,2-trifluoroethanol mixtures at 25.0°C and X_{2Ad[2]B}^C values.

40% TFE - 60% EtOH

20% TFE - 80% EtOH

expected on the basis of the Hughes-Ingold theory²⁶ for a reaction proceeding with charge development in the slow step (equation 4). Indeed, inspection of Table 1

shows that, for any given solvent composition, the $\chi_{2Ad\{2\}B}$ value resembles closely the χ_{OTs} value. The two sets of χ values presented in Table 1 are plotted in the figure.

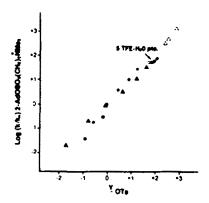


Figure. Plot of log(k/ko)2AdOSO2CH2CH2NMe3 (Y2Ad[2]B) against YOTs; closed circles: aqueous ethanol; open circles: aqueous TFE; closed triangles: aqueous acetone; open triangles: aqueous HFIP; closed squares: aqueous methanol.

In the figure, χ_{OTs} values for 90 and 80% acetone are based directly upon 1-adamentyl p-toluenesulfonate solvolysis. 17,31 Allard and Casadevall 32 have suggested, however, that, for use in conjunction with χ_{OTs} values based on 2-adamentyl p-toluenesulfonate solvolysis, χ_{OTs} values of this type are better obtained using equation 5. When all 28 solvents of Table 1 are considered,

a-csee Table 1. don volume-volume basis.

a slope (m value) of 1.032 is obtained when XOTs values for 90, 80, and 70% acctone based on equation 5 are used, and the m value is 0.987 when these values are based directly on the 1-adamantyl tosylate specific solvolysis rates (Table 3).

Individual solvent mixtures also give m values fairly close to unity, ranging from 0.90 for aqueous acctone to 1.26 for aqueous HFIP. For aqueous TFE, the points were closely bunched together and a meaningful slope could not be obtained. It must be concluded that the kinetic solvolytic behavior of sulfonate esters with a remote positive charge mimics closely that of the more familiar uncharged sulfonate esters. The relatively high solubility of betylates or amsylates on in highly aqueous media presents a way of conveniently obtaining Y scales for sulfonate esters over the full range of aqueous-organic solvent composition, without the solubility problems 15,17,20 which often plague studies of neutral sulfonate esters. The very weakly nucleophilic triflate has been found to be a convenient counterion. 33

TABLE 3. Correlation of Y2Ad[2]B values with Yors values.

System (n) ^b	Slope (<u>m</u> value)	Intercept	r c
90-40% EtOH (6)	0.999	-0.020	0.988
100-90% MeOH (2)	1.161	-0.362	
90-40% Acetone (6)d	0.899	-0.097	0.998
90-40% Acetone (6)*	0.821	+0.023	0.996
90-70% HFIP (3)	1.258	-0.552	1.000
A11 $(28)^d$	1.032	-0.126	0.991
All (28)*	0.987	-0.047	0.987

*Data from Table 1. DNumber of data points. Correlation coefficient. Using $\chi_{\rm OTS}$ values for 90 and 80% acetone calculated as in footnote g of Table 1. Using $\chi_{\rm OTS}$ values for 90 and 80% acetone calculated as in footnote h of Table 1.

Combining the present results with data from the literature, it is possible to compare the solvolyses of three 2-adamantyl sulfonate esters of the type $2AdOSO_2CH_2X$, where X is H^{15} , CF_3^{34} , or $CH_2NHe_3^*$ (the present study); specific rates of solvolysis in 50% ethanol at 25.0°C are 0.096 x $10^{-5}s^{-1}$ for X = H (extrapolated from data at higher temperatures), 8.17 x $10^{-5}s^{-1}$ for X = CF_3^{34} , and 9.53 x $10^{-5}s^{-1}$ for X = $CH_2NHe_3^*$ (Table 1). In terms of substitution within the methyl group of 2-adamantyl ethanesulfonate, one trimethylamino group has almost exactly the same influence as three fluorine atoms. In terms of substitution within the methyl group of 2-adamantyl methanesulfonate, both a CF_3 and a $CH_2NHe_3^*$ group produce very close to a one hundred fold increase in the rate of solvolysis. For

the presumably S_M2 hydrolysis of butyl [2]betylate at 35.0°C, the specific rate was 16 times that estimated from data³⁵ for butyl methanesulfonate hydrolysis.²⁸ That the betylate/mesylate rate ratio is higher for a solvolysis of the 2-adamentyl esters than for a solvolysis of the butyl esters is to be expected from the previously observed²³ larger leaving group effects for the ethanolysis of a series of sulfonate esters when the S_N1 rather than the S_N2 mechanism operates.

Supporting the proposal that the solvolyses of 2-adamantyl sulfonate esters with a remote positive charge parallel closely the solvolytic behavior of uncharged sulfonate esters, it has been shown³⁶ that the product partitioning during solvolysis in a 2,2,2-trifluoroethanol-ethanol mixture is virtually identical for the 2-adamantyl amsylate ion³⁶ and 2-adamantyl g-toluonesulfonate.³⁷

EXPERIMENTAL.

Materials. The purifications of acetone, ³¹ ethanol, ³¹ methanol, ³¹ 1,1,1,3,3,3-hexafluoro-2-propanol, ³⁸ and 2,2,2-trifluoroethanol ³⁹ were as previously described. 2-adamantanol (Aldrich), 2-chloroethanesulfonyl chloride (Aldrich) and methyl trifluoromethanesulfonate (Aldrich) were used as supplied.

2-Adamantyl ethenesulfonate. Following a previously reported general procedure, 28 2-Adamantanol (3.05 g, 0.020 mol) was dissolved in 150 ml of ice-cold CH₂Cl₂ and 2-chloroethanesulfonyl chloride (6.52 g) and ice-cold Et₃N (7.08 g) were added. After 30 min, the mixture was washed with cold 10% aqueous Na₂CO₃ (3 x 100 mL) and H₂O (100 mL). The CH₂Cl₂ layer was dried (anhyd. HgSO₄) and the solvent evaporated. The crude product (3.98 g, 82%) was used without further purification; 1 H NMR (CDCl₃) $\delta_{A}6.56$, $\delta_{B}6.39$, $\delta_{C}6.06$ (each 1 H): $J_{AB} = 16.6$ Hz and $J_{AC} = 9.6$ Hz, 4.74 (s, CHOSO₂CH-CH₂), 2.2-1.2 (m, 14 H).

2-(2-Adamantoxysulfonyl)-N.N.N-trimethylethanaminium trifluoromethanesulfonate(2-adamantyl [2]betylate triflate). 2-Adamantyl ethenesulfonate (0.727 g; 3.0 mmol) was dissolved in 25 ml of ice-cold CH₂Cl₂ and He₂NH (1 mL) was added. After 10 min, the solvent and excess He₂NH were removed by evaporation. The resulting 2-adamantyl 2-(dimethylamino)ethanesulfonate was immediately dissolved in CH₂Cl₂ (25 mL) and methyl trifluoromethanesulfonate (0.37 mL, 1.1 equiv) was added. After 15 min, the solvent was evaporated and the residue triturated with ether. Filtration gave a solid product (0.95 g; 70%): mp 122-130° (dec). Several batches were prepared and used directly in the kinatic runs. Recrystallization of a portion from acatonitrile gave an off-white solid: mp 125-130° (dec); ¹H NNR (CD₃CN) 64.96 (s, 1 H), 3.72 (s, 4 H), 3.11 (s, 9 H), 2.3-1.6 (m, 14 H); IR v_{max} (KBr) includes strong peaks at 1255, 1168, 1032, 918 cm⁻¹. Anal. Calcd for C₁₆H₂₈NO₆F₃S₂: C, 42.56; H, 6.25; N, 3.10. Found: C, 42.51; H, 6.38; N, 3.21.

Kinatic Procedures. The kinetic runs were carried out by removing, at suitable time intervals, 5 mL portions from 50 mL of solution, except for the runs in HFIP-containing solvents, when 1 mL portions were removed from 10 mL of solution. The portions were quenched by addition to 25 mL of acetone, cooled to solid CO₂-acetone slush temperature and containing Lacmoid (resorcinol blue) indicator. The acid previously produced was titrated against a standardized solution of sodium methoxide in methanol. First-order rate coefficients were calculated from the integrated form of the rate equation and all values from duplicate runs were averaged to give the values reported in Tables 1 and 2. For runs with half lives of longer than 16 h, the time to ten half lives (infinity titer) was reduced by addition of a portion to 5 mL of water and allowing to stand overnight at 50° prior to addition of the 25 mL of acetone and titration in the usual manner.

REFERENCES

- 1. E. Grunwald and S. Winstein, J. Am. Chem. Soc., 70, 846 (1948).
- For a brief discussion, see T. H. Lowry and K. S. Richardson, "Mechanism and Theory in Organic Chemistry," 3rd Ed., Harper and Row, New York, NY, 1987, pp 335-340.
- 3. S. Winstein, E. Grunwald, and H. W. Jones, J. Am. Chem. Soc., 73, 2700 (1951).
- F. L. Schadt, T. W. Bentley, and P. v. R. Schleyer, <u>J. Am. Chem. Soc.</u>, <u>98</u>, 7667 (1976).
- 5. D. N. Kevill and G. H. L. Lin, J. Am. Chem. Soc., 101, 3916 (1979).
- 6. D. N. Kevill and S. W. Anderson, J. Am. Chem. Soc., 108, 1579 (1986).
- D. N. Kevill, W. A. Kamil, and S. W. Anderson, <u>Tetrahedron Lett.</u>, <u>23</u>, 4635 (1982).
- 8. T. W. Bentley and G. E. Carter, J. Am. Chem. Soc., 104, 5741 (1982).
- S. P. HcManus, N. Neamati-Hazraeh, R. H. Karaman, and J. H. Harris, <u>J. Org.</u> <u>Chem.</u>, <u>51</u>, 4876 (1986).
- H. H. Abraham, R. H. Doherty, H. J. Kamlet, J. H. Harris, and R. W. Taft, J. Chem. Soc., Perkin Trans. 2, 913 (1987).
- For opposing viewpoints see (a) D. Farçasiu, J. Jähme, and C. Rüchardt, J. Am. Chem. Soc., 107, 5717 (1985); (b) G. F. Dvorko, E. A. Ponomareva, and
 N. I. Kulik, Russ. Chem. Rev. (Engl. Transl.), 53, 948 (1984).
- D. J. Raber, R. C. Bingham, J. H. Harris, J. L. Fry, and P. v. R. Schleyer, J. Am. Chem. Soc., 22, 5977 (1970).

- J. L. Fry, C. J. Lancelot, L. K. H. Lam, J. H. Herris, R. C. Bingham, D. J.
 Raber, R. E. Hall, and P. v. R. Schleyer, J. Am. Chem. Soc., 92, 2538 (1970).
- J. L. Pry, J. H. Harris, R. C. Bingham, and P. v. R. Schleyer, J. Am. Chem. Soc., 92, 2540 (1970).
- (a) T. W. Bentley, C. T. Bowen, H. C. Brown, and F. J. Chloupek, <u>J. Org. Chem.</u>,
 46, 38 (1981); (b) T. W. Bentley and G. E. Carter, <u>J. Org. Chem.</u>, <u>48</u>, 579 (1983).
- 16. B. Allard and E. Casadevall, Nouv. J. Chim., 7, 569 (1983).
- D. N. Kevill, M. S. Bahari, and S. W. Anderson, <u>J. Am. Chem. Soc.</u>, <u>106</u>, 2895
 (1984).
- 18. T. W. Bentley, G. B. Carter, and K. Roberts, J. Org. Chom., 49, 5183 (1984).
- 19. D. N. Kevill and S. W. Anderson, J. Org. Chem., 50, 3330 (1985).
- 20. T. W. Bentley and K. Roberts, J. Org. Chem., 50, 4821 (1985).
- T. W. Bentley and K. Roberts, submitted for publication. We wish to thank
 Dr. Bentley for providing us with a preprint of this manuscript.
- 22. R. C. Fort, Jr. and P. v. R. Schleyer, Chem. Rev., 64, 277 (1964).
- D. N. Kevill, K. C. Kolwyck, D. M. Shold, and C.-B. Kim, <u>J. Am. Chem. Soc.</u>, <u>95</u>, 6022 (1973).
- 24. D. C. Hawkinson and D. N. Kavill, J. Org. Chem., accepted for publication.
- 25. A. R. Katritzky and B. Brycki, J. Am. Chem. Soc., 108, 7295 (1986).
- C. K. Ingold, "Structure and Mechanism in Organic Chemistry," Cornell University Press, Ithaca, NY, 1953, pp 345-350.
- P. Blumbergs, A. B. Ash, F. A. Daniher, C. L. Stevens, H. O. Michel, B. E. Hackley, Jr., and J. Epstein, <u>J. Org. Chem.</u>, <u>34</u>, 4065 (1969).
- J. F. King, S. H. Loosmore, H. Aslam, J. D. Lock, and H. J. HcGarrity, <u>J. Am.</u>
 <u>Chem. Soc.</u>, 104, 7108 (1982).
- C. N. Sukenik, J. A. P. Bonapace, N. S. Handel, P.-Y. Lau, G. Wood, and R. G. Bergman, J. Am. Chem. Soc., 99, 851 (1977).
- 30. C. N. Sukenik and R. G. Bergman, J. Am. Chem. Soc., 98, 6613 (1976).
- D. N. Kevill, K. C. Kolwyck, and F. L. Weitl, <u>J. Am. Chem. Soc.</u>, <u>92</u>, 7300 (1970).
- 32. B. Allard and E. Casadevall, Nouv. J. Chim., 9, 565 (1985).
- 33. We are currently carrying out an extensive study of the specific rates of solvolysis of 2-adamentyl amoujate triflate.
- 34. V. J. Shiner, Jr. and R. D. Fisher, J. Am. Chem. Soc., 93, 2553 (1971).
- 35. P. W. C. Barnard and R. E. Robertson, Can. J. Chem., 39, 881 (1961).

- 36. S. P. McManus, R. W. Naumann, and S. E. Zutaut, unpublished results; see footnote to S. P. McManus, T. Crutcher, R. W. Naumann, K. L. Tate, S. E. Zutaut, A. R. Katritzky, and D. N. Kevill, <u>J. Org. Chem.</u>, submitted for publication.
- 37. T. Ando and S. Tsukamoto, Tetrahedron Letters, 2775 (1977).
- T. W. Bentley, C. T. Bowen, W. Parker, and C. I. F. Watt, <u>J. Chem. Soc., Perkin Trans.</u> 2, 1244 (1980).
- 39. Z. Rappoport and J. Kaspi, J. Am. Chem. Soc., 96, 4518 (1974).